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When a small perturbation is applied to the plasma dispersion, a small shift of 
frequency due to correlation occurs. This is justified even for strong coupling, 
since the effect is proportional to k 2 (k is the wave vector) and it is sufficient to 
consider the k ~ 0 limit. Then by solving the dispersion relations for 6w, the shift 
of frequency due to correlation, at different angles of propagation, we obtain 
all information needed. The plasma modes in which we are primarily interested 
are the "whistler" and the "extraordinary" modes. In this work the STLS (Singwi, 
Tosi, Land, and Sjolander) approximation scheme is used. It is seen that the 
correlational effects enter only through terms of order k 6 for the whistler mode 
and terms of order k ~ for the nonresonant situation of the extraordinary mode. 

1. I N T R O D U C T I O N  

In weak ly  cor re la ted  p l a smas  the po ten t i a l  energy o f  the par t ic les  is 
much  less than  the i r  k ine t ic  energy (Genga ,  1986). Thus,  in genera l ,  the  
con t r ibu t ion  o f  the  po ten t i a l  energy of  the  par t ic les  is neglec ted  when thei r  
response  is cons ide red  to exci ta t ions  due to ex te rna l  or  se l f -consis tent  fields. 
In  cases,  however ,  where  the  po ten t ia l  energy o f  the  par t ic les  is equal  to 
or  greater  t han  thei r  k ine t ic  energy (s t rongly  coup led  p lasmas)  a specia l  
a p p r o a c h  is ca l led  for. In  this work,  we cons ide r  a nonrela t iv is t ic ,  
h o m o g e n e o u s ,  o n e - c o m p o n e n t  classical  p l a s m a  in equ i l ib r ium in the pres-  
ence o f  a un i fo rm ex te rna l  magne t ic  field; the  co r r e spond ing  qua n tum 
p l a s m a  case can be p u b l i s h e d  soon.  

Three  m a j o r  a p p r o x i m a t i o n  schemes can be used  to ob ta in  the d isper-  
s ion p rope r t i e s  o f  s t rongly  coup l ed  p lasmas :  the STLS (Singwi,  Tosi ,  Land ,  
and  S jo lander ) ,  the  TI  (Totsuj i  and  Ich imaru) ,  and  the G K S  (Go lden ,  
K a l m a n ,  and  Silevitch) schemes,  respect ively.  Cor re l a t ion  effects on t rans-  
verse m o d e s  only  occur  t h rough  l ong i tud ina l - t r ansve r se  coupl ing ,  s ince all 
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these schemes consider longitudinal internal field only. It is known (Carini 
et al., 1980) that for strong coupling, longitudinal plasma modes exhibit 
"negative dispersion." The main interest in studying transverse modes lies 
in determining whether a similar change takes place and what the critical 
coupling value is. The problem is related to the Malmberg-O'Neil  experi- 
ment, where a strongly magnetized, strongly coupled plasma is generated. 

In this work we use the STLS schemes (Kalman, 1978) for the following 
reasons: 

1. The problem for a magnetized plasma is rather complex because of 
the anisotropic character of the system, which demands that one 
use all six elements of the dielectric tensor; therefore a simple 
approximation is called for. 

2. One knows that for an unmagnetized plasma the STLS gives qualita- 
tively reasonable results for the plasma frequency shift even though 
it does not for the plasma damping. Since in our work the primary 
objective is to determine the frequency shift in various modes, the 
STLS seems to be adequate. 

3. The STLS, or any mean field theory, is reasonably good for the 
low-frequency modes of interest to us. 

In Section 2 we considered the perturbation method used in this work. 
Sections 3 and 4 comprise the main body of our work. We determine the 
frequency shift due to correlations of the whistler and the extraordinary 
modes for arbitrary direction of propagation as a function of coupling 
parameter y. In the latter case, one has to distinguish between the "nonres- 
onant" and "resonant" situations, depending upon whether the cutoff 
frequency wl is different from or coincides with the cyclotron frequency. 

In Section 3 we consider the case of a cold plasma; temperature 
corrections are obtained in Section 4. We also study the effects of  damping 
on the modes under consideration. 

2. THE PERTURBATION METHOD 

A shift of frequency due to correlation, 8uto, occurs when a small 
perturbation is applied to the dispersion relations. The correlation is very 
weak for weakly coupled plasmas, but can be strong for strongly coupled 
plasmas. The shift 8uw is of order k 2, and thus is small as k-> 0, which is 
equal to the order of the frequency shifts 6nto and 6tw caused by refractive 
and thermal effects, respectively, even for y >> 1. That is, after perturbation 
we find that 

oJ = o~~ 8,o (1) 
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where to ~ is the unperturbed frequency, defined as 

2 ~([lk2c2/~o~) cos 0 (Whistler mode) 
~o = ,  (2) 

/w ,  (low-frequency extraordinary mode) 

with o)~, Wp, and f~ defined as 

o)1 : �89 + (1 +4w~/D:) 1/21 

Wp = (4r 1/2 (electron plasma frequency) (3) 

eB 
f ~ -  (electron cyclotron frequency) 

m 

and &o is the total shift in frequency caused by refractive, thermal, and 
correlational effects. That is, in strongly coupled plasmas, 

~Sn~o + ~Suto, T = 0 
(4) 

l 6n,o + 6,w + ,Suw, T finite but small 

while for the case of weakly coupled plasmas we set 6u~. = 0 in equation (4). 
The dispersion relation for the plasma modes is given by 

A = 1~ - n2T1 = 0 (5) 

When a small perturbation is applied in the vicinity of a mode that exists 
without the perturbation, we obtain 

J 

h~(kto ~ O)+ &oh~(w ~ 0 ) = 0  (6) 

where 

A~(o~ ~ O) = OAo(w, 0 _ _ ) ]  (7) 
0~0 1 ~o=w ~ 

and A is a function of strongly coupled polarizabilities (Genga, in press). 
In the case of the low-frequency extraordinary mode we can have a situation 
where w~ = nfl  (n is an integer), i.e., the resonant situation. In this situation 
we apply Taylor's (power series) expansion to Z((ka  cos O)/(w-nf~)) ,  
where Z(z , )  is the plasma function (Fried and Cote, 1971), for n = 0, and 
apply an asymptotic expansion to the case where n r 0 when evaluating 
the components of weakly coupled dielectric tensor (Furutani and Kalman, 
1965); physically, n stands for the nth harmonic of the resonant frequency 
in classical plasmas. 

3. COLD PLASMAS ( T = 0 K )  

It is known that the appearance of damping and harmonics is a 
consequence of finite plasma temperature for the case of a classical plasma. 
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Therefore, for a cold plasma we have to consider the whistler mode and 
the nonresonant situation of  the extraordinary mode only for the cases with 
no damping waves propagating parallel, perpendicular, or at an oblique 
angle to the magnetic field, respectively. 

From equation (A15) of the Appendix we see that the longitudinal 
component of the polarizability tensor has a strongly correlated contribution 
for parallel propagation. Since there is no transverse-longitudinal coupling 
in this case, this implies that there is no coupling effect on the plasma 
dispersion for either the whistler mode or the nonresonant case of the 
extraordinary mode. The resonant situation for the extraordinary mode still 
does not exist (Genga, 1986). It is also known that the whistler mode does 
not exist when the direction of propagation is perpendicular to the magnetic 
field. These results also hold for the case of warm plasmas in the presence 
of an external magnetic field. 

3.1. Whistler Mode 

For this mode we only consider the propagation of waves at an oblique 
angle to the external magnetic field. When a small perturbation is applied 
to the dispersion relation, the frequency shift of  the mode is given by 
(Figure 1) 

~"~2 k6 C6 [ 2yw2 
~(.,2)_ ~ (,o2+a%(l+cos ~ o)+~o~sin ~o~ (.,~+n% 

top 3~'~2K2r 2 

x[(w2p+f~ 2) cos 2 0+w~ sin 2 0] sin 2 0 cos 2 0]  cos 2 0 (8) 

where y = K3/4~rZn is the ratio of potential energy to kinetic energy, K 2 = 
14~-eZn/3, n = N/v is the particle number density, and/3 = 1/kBT (kB is the 
Boltzmann constant). Equation (9) shows that ~w is angle-dependent. It 
also shows that y should be very large, i.e., of  the order K2c~w~2, in order 
for the strong coupling effect to be realized. 

3.2. Nonresonant Case of the Extraordinary Mode 

In this case we consider the correlation effects on modes propagating 
perpendicular and at an oblique angle 0 to the external magnetic field. For 
perpendicular propagation the frequency shift is of the form 

6o) 2(2wl+D) k w v 3KZcZJ (9) 
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Whistler mode. Strong coupling term ~uw 2 (in units of 3k6c4a4/4w 4) versus 7/9 for 
0 = 30 ~ and 60 ~ 

Equation (9) shows that the frequency shift of  order k 2 does not have a 
resonance. It further shows that the frequency shift due to correlation is 
positive and the value of y should be very large, i.e., of  order K2CeO~p 2, in 
order for the strong coupling effect to be detectable. 

When the direction of propagation is at an oblique angle to the external 
magnetic field we find that 

k2c 2 [ o , . + a  ~ ( ~ o , - n ) 2 s i n  2 0 ]  
& o - 2 w ~ + ~ [  2w~ ( l + c~  0)+ ~ 2--77-~-XT,2--7-~-, (10) 

This shows that 6u~o is angle dependent and positive for all values of  0. In 
this situation the strong coupling effect noticable only for large value of 3' 
as in the above cases. 
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4. WARM CLASSICAL PLASMAS: 
PLASMAS WITHOUT D A M P I N G  

4.1. Whistler Mode 

In this case the frequency shift for an arbitrary angle of propagation 
is given by 

- -  -t-  ~ p  6(w 2) --~ / | l + ~ ( 1 - 4 t a n  20) cos 2 0 +  1 
~op [ \  1) a 2 

0)402 [" 
+ ~ 2 [  (2 cos 2 0 - 3  sin 2 0 ) - 4 y ( c o s  2 0 - 2  sin 2 O) 

+ 9 ( 2 c ~  2 0 - 5 s i n  20) 1 -  + cos 20 (11) 

This equation leads to a conclusion that 6~,(w 2) is infinite at y = 3. For 
y r  6~,(w 2) is either negative or positive depending on the angle of 
propagation as shown in Figure 1. It can further be seen from equation 
(11) that the correlational effect can be realized if y is very large. 

4.2. Nonresonant Case of  Extraordinary Mode 

For propagation perpendicular to the external magnetic field, we find 
that the frequency shift is of the form 

(O)1 + ~~)2k2r [ " ~ a  2 [ 4 y 

~ 2 - ~ ~ / 1 - ~  ( ~ ) c 2 L ( o l - ~ 2 1 ] )  ~ 9(~o1+~)]} (12) 

Equation (12) shows that &o does not have a resonance for a frequency 
shift of order k 2. However, the frequency shift of order k 4, i.e., the second- 
order frequency shift, becomes infinitely large as we approach the neighbor- 
hood of ~ and 21~ (Genga, 1986), so that we cannot ignore its existence. 

Turning to the situation when propagation is at an oblique angle 0 to 
an external magnetic field, we find that 

+ 2 2 wl l))k C a 2 4 
6,o - 2 -~Z  +---aW~ [ (,o~ + a ) ( 1  + cos ~ 0 )+  0,~ c2 ,o, + 2 a  

'y W 1 ] 
-~ 9(oJ1 +1)) sin20 +2  (wl +f~)2 cos20 (13) 

In this case we see again that 6w does not have a resonance for a frequency 
shift of order less than k 4 as  in the perpendicular propagation situation. 
Figure 2 shows that 6,w is positive and angle-dependent. 
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Fig. 2. Extraordinary mode, strong coupling nonresonant term 6u~o (in units of yk2aZ/9~p) 
versus fZ (in units of w,) for 0 = 30 ~ and 90 ~ 

4.3. Resonant Case of  the Extraordinary Mode 

In  this case, only n = 1 is considered. By combining equations (6) and 
(A15) we obtain the elements o f  a strongly coupled  dielectric tensor when 
we assume that  

Uk(a~ sin 2 0 + 2 a ~  sin 0 cos 0 + a ~  cos 0)<< 1 

o o and a~ are weakly coupled  polarizabilities. The correla- where OL[1 ~ O~13 , 

t ional terms in this si tuation are found  to be of  order  k 2 less than the 
correlationless ones. Since in this case we determine the frequency shift o f  
the first harmonics ,  which is o f  order  k 2, the correlational effects are 
negligible because they are o f  order  k 4. However ,  if the f requency shift o f  
the higher orders is determined,  the correlational effects cannot  be neglected. 

5. P L A S M A S  W I T H  D A M P I N G  

From equat ion (A15) we find that both  coupl ing and damping  effects 
on waves propagat ing  along the magnetic  field are absent. It is also known  
that  both  the whistler mode  and the resonance situation o f  the extraordinary 
mode  do not  exist for waves propagat ing across an external magnet ic  field; 
the nonresonan t  extraordinary mode  exists, but  it is unaffected by damping.  
For  p ropaga t ion  at an oblique angle to an external magnet ic  field we find 
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that the nonresonant and resonant cases of the extraordinary mode are not 
affected by both damping and correlations. However, for a frequency shift 
of  order greater than k 2 of the resonant situation of the extraordinary mode 
the correlational terms contribute. The nonresonant situation is not affected 
by correlations for all values of k. The whistler mode in this case is damped, 
but is not affected by correlations for any value of k. In this situation where 
the modes are not affected by correlations we recover the results for the 
weakly coupled plasma case. 

6. CONCLUSION 

We found that for both cold plasmas and warm plasmas without 
damping, the coupling term is of order ya2c -2. This implies that in order 
for the coupling effect to be effective, y has to be very large, i.e., about of 
order a-2c 2. We also found that for y = 3, 6(w 2) of the whistler mode for 
warm plasmas blows up, in contrast to 6(o) 2 ) of the whistler mode for cold 
plasmas. This originates from the coupling with the longitudinal mode and 
is the result of the infinite compressibility at y = 3. When damping is taken 
into account, we found that the damping of the whistler mode is not affected 
by coupling, even for oblique propagation. The k-independent cutoff 
frequencies (tOo, wl) are necessarily unaffected by the coupling, since it is 
at least of order k 2. Somewhat less obvious is the result that even the lowest 
order whistler dispersion relation (o) 2 ~ k 4) remains unaffected, and correla- 
tional effects enter only through terms of order k 6. However, for the 
nonresonant situation of  the extraordinary mode the correlational effects 
enter through terms of  order k 2. 

APPENDIX. COUPLING PROJECTION OPERATOR 

When a system is under the influence of an external perturbation, such 
as an electric field, its behavior is characterized by response functions. Once 
an external field is set up, the system's response also generates additional 
fields, called "plasma" or "polarization" fields. These add to the external 
field, so that the particles respond to the total field, and physical response 
relates to the later. 

Therefore, if /~, t~ refer to the external field and density, /~, r~ are 
notations for plasma field and density, and /~ and n stand for total field 
and density, then 

(AI) 
n(s = ,~(~)+ ~(~o)) 
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/~,/~, and /~  are interrelated as follows: 
A 

E ( k t o )  = e - ' ( k t o ) E ( h o )  
A 

E ( kto ) = - a ( k,~ ) P. ( koJ ) 

Similarly, for n, t/, and t~, we have in the magnetic free case 

t~(k~o) 
n ( k t o )  = 

eL(m) 

n ( k t o )  = - a L ( k O ) ) f i ( k t o )  

= - ~ L ( k O ) ) f i ( k t o )  

where 
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(A2) 

(A3) 

ka , aL(/~to) -- k2 (A4) 

whereas n is related to /~, /}, /~ as follows: 

n(  kto ) = - 4 ~ r e  2 �9 a ( k w  ) E ( kto ) 

4~re 2 

= ;k E(k,o) (AS) 
4~-e 2 

Equations (A1)-(A5) are used to derive the coupling projection operator 
as follows, We first consider the unmagnetized case, but later generalize it 
to the magnetized case. Equation (2) can be expressed as 

E L= - o~~ L'4- E~ ~ (A6) 

where a ~ is the uncorrelated longitudinal polarizability tensor for the 
longitudinal component of the field. We have 

/~  L..I_ ]~ . . . .  ~" ik6kn k (A7) k - -  X..,k 

In the STLS theory, the correlational contribution is given by 
-- corr 

E k = iknk~bkU k (A8) 

The superscript corr means "correlated," ~bk is the static effective potential, 
thk is the longitudinal Coulomb potential, and /Zk is the effective screening 
function. The q~k, 6k, and /Zk are interrelated as follows: 

~Jk = (1 + { d k ) ~ k  ( A 9 )  
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When equations (A6)-(A8) are combined and the result is compared with 
equation (A2) we obtain 

aL = D - ' a  ~ (A10) 

as "the strongly correlated longitudinal polarizability tensor," where D is 
given by 

D = 1 + Uka ~ (All) 

For the case of magnetized plasmas, equation (A8) is still valid. When the 
longitudinal projection operator T is applied to the right-hand side of 
equation (A8), we obtain 

iknkqb k = k k .  E / k 2 (A12) 

where 

T = k .  k / k  2 (A13) 

Hence, equation (8) becomes 

. . . . .  Ukk~k. /k  2 (A14) E k v  - -  

�9 When equation (A14) is substituted into equation (A7) and the result is 
compared with equation (A2) we find 

_ - a  o (A15) 

as "the strongly coupled polarizability tensor," where 

Uka~pk, k ~ / k  (A16) D ~  = 6~,+ o 2 
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